

Habitat, Movement, and Mortality

presented by

Brandon Prehn

MSc Student – Integrated Remote Sensing Studio
Faculty of Forestry, University of British Columbia

Brandon.prehn@ubc.ca

Research question

Q3A2: Can grizzly bear movements be related to fine scale changes in forest structure, such as openings, gaps, and vegetation patterns?

• How have natural resource extraction activities impacted movement patterns, and what are the effects of access restriction?

2

Are movement patterns of grizzly bears being impacted by natural resource extraction activities?

- Jasper NP, Banff NP (protected areas)
- Upper Foothills
 - Forestry operations (lodgepole pine in mixed coniferous (with associated spruce) or pure stands
 - Mining activity
 - Legacy seismic lines

Yellowhead bears are especially well suited for analysis within this framework:

Bears in the Yellowhead area are more tightly linked to vegetation phenology on the landscape than coastal bears

Mean Adult Mass (kg)	Interior Alaska	Yellowstone	Interior BC	Jasper
Male	243	193	117	92
Female	117	135	58	55

Pasitschniak-Arts, 1993

Munro et al., 2006

Light Detection And Ranging

- Active remote sensing technology
- Measures the distance to target surfaces using narrow beams of near-infrared light
 - Laser beam penetrates the canopy to give multiple distance measurements
 - Forest structure can be estimated from the distribution of these return points

What does LiDAR tell us about forest structure?

- Individual tree and area-summarized means, for example:
 - Tree heights (99th percentile, mean, 10th percentile, etc)
 - Canopy cover
 - Variance & standard deviation of heights

- Detailed gap, corridor and edge information
- Stand density
- Micro-terrain features

Treefall & Gap Detection

Eitel et al., 2016

Linking structure to movement

We will use a two-fold approach:

- Trajectory-based: how are patterns of dispersal related to the structure metrics surrounding GPS fix locations?
- Likelihood-based: how is vegetation structure at the home-range scale different than at a representative landscape scale?

BEHAVIOUR

Preliminary Results

0.34 - 0.57 0.57 - 0.98 LiDAR-Derived Heights

· High: 96.3616

BEHAVIOUR

Next Steps

- Process LiDAR point cloud
- Trajectory-based analysis of bear movement
- Spatial analysis of habitat selection
- Plan summer 2018 LiDAR acquisition
 - fRI has spent the last field season collecting data on bedding, scavenging,
 & kill sites
 - How are these behaviors related to forest structure?

References

Eitel, J. U., Höfle, B., Vierling, L. A., Abellán, A., Asner, G. P., Deems, J. S., ... & Mandlburger, G. (2016). Beyond 3-D: The new spectrum of lidar applications for earth and ecological sciences. *Remote Sensing of Environment*, 186, 372-392.

Koukoulas, S., & Blackburn, G. A. (2004). Quantifying the spatial properties of forest canopy gaps using LiDAR imagery and GIS. International Journal of Remote Sensing, 25(15), 3049-3072.

Mcloughlin, P. D., Ferguson, S. H., & Messier, F. (2000). Intraspecific variation in home range overlap with habitat quality: a comparison among brown bear populations. *Evolutionary Ecology*, 14(1), 39-60.

Munro, R. M., Nielsen, S. E., Price, M. H., Stenhouse, G. B., & Samp; Boyce, M. S. (2006). Seasonal and diel patterns of grizzly bear diet and activity in west-central Alberta. Journal of mammalogy, 87(6), 1112-1121.

Alberta Environment and Parks. 2016. Alberta Grizzly Bear (Ursus arctos) Recovery Plan,. Alberta Environment and Parks, Alberta Species at Risk Recovery Plan No. 38. Edmonton, AB. 85 pp.

Pasitschniak-Arts, M. (1993). Ursus arctos. Mammalian Species, (439), 1–10.

Tardiff, S. E., & Stanford, J. A. (1998). Grizzly bear digging: effects on subalpine meadow plants in relation to mineral nitrogen availability. *Ecology*, 79(7), 2219-2228.

15