Eco-Anthromes: Mapping unique ecosystems and anthropogenic disturbance in the Yellowhead

presented by Sean Patrick Kearney

Research question

Q1.1 What are the temporal and spatial dynamics of fine-scale anthropogenic and non-anthropogenic disturbances over the Yellowhead management area and can they be characterized across the region?

First steps: mapping 'Eco-Anthromes'

How do ecological and anthropogenic factors interact to influence bear health and behaviour?

Have changing landscape conditions (natural and anthropogenic change) and structural configuration influenced the region's grizzly bear population?

Have road density threshold approaches to landscape management influenced the abundance and distribution of grizzly bears?

Mapping ecological regions

Goal: To identify unique areas with similar capacities to support ecosystem health and function

Dry Mixedgras

Canadian Eco-Regions	Fescue Grassland	Peace Lowland
Aspen Parkland	Hay River Lowland	Slave River Lowland
Athabasca Plain	Mid-Boreal Uplands	Tazin Lake Upland
Boreal Transition	Mixed Grassland	Wabasca Lowland
Clear Hills Upland	Moist Mixed Grassland	Western Alberta Upland
Cypress Upland	Northern Alberta Uplands	Western Boreal
Eastern Continental Ranges	Northern Continental Divide	Western Continental Ranger

<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><text>

Eco-Anthromes: a complementary approach

People have emerged as a force of nature, rivaling climatic and geologic forces in shaping the earth and it's processes.

-Ellis and Ramankutty (2008)

Source: ABMI Wall-to-Wall Human Footprint Inventory (scale 1:15,000)

Esri, HERE, DeLorme, MapmyIndia, © OpenStreetMap contributors, and the GIS us community

What we hope to achieve...

An Eco-Anthrome mapping approach will:

- include the extent and cumulative impacts of human activity
- be quantitative, reproducible and adaptable (using statistical clustering)
- help identify new and novel ecological potentials (e.g., managed vs. natural disturbances)

Mapping Eco-Anthromes in the Yellowhead

Variable	Interpretation	Source
CLIMATE		
Mean annual precipitation (mm)	general rainfall	Climate NA
Mean annual temperature (°C)	general temperature	Climate NA
Temp difference from mean warmest and coldest months (°C)	seasonality	Climate NA
Summer heat : moisture index	productivity potential	Climate NA
Growing degree-days (°C × days > 5°C)	length of growing season	Climate NA
Chilling degree-days °C × days < 0°C)	chilling impact	Climate NA
Precipitation as snow (mm)	snow cover	Climate NA

Climate

Terrain

Vegetation

Disturbance

Disturbance layers

Index = Proximity × Density × Intensity

Linear features:

- Density scaled to 1.2 km per km² (e.g., Boulanger et al., 2014)
- Proximity up to 25 km, exponential decline (e.g., Boulanger et al., 2014; Rogala et al. 2011)
- Intensity weighted by type

Disturbance layers

Index = Proximity × Density × Intensity

Other features:

- Density scaled to 99th percentile
- Proximity up to 25 km, exponential decline (e.g., Boulanger et al., 2014; Rogala et al. 2011)
- Intensity weighted with imagery

Syncline Ridge fire (2003)

Alberta

Preliminary Results: 15-class map

ENVIRONMENT

Outstanding questions:

How many classes?

How to weight and map disturbances?

- Roads vs. other linear features
- Search windows and proximity

Upcoming work-mapping Alberta

Forest connectivity

Fire

Linear disturbance

Upcoming work – RapidEye for Yellowhead

Landsat (30 m)

RapidEye (5 m)

Research

- Characterize ecologicalanthropogenic interactions
- Stratify the landscape to better answer other questions
- Identify unique and at-risk areas

Industry

- Characterize the landscape and identify similar locations
- Understand risks and cumulative impacts
- Assess policies (e.g., road density)

Thank you

Contact info: Sean Kearney Integrated Remote Sensing Studio, UBC 604-827-429 | sean.kearney@alumni.ubc.ca

Integrated Remote Sensing Studio

